ANDRÉ RODRIGUES

Engenheiro Estrutural

Memorial Descritivo

Edifícios em Alvenaria Estrutural Bairro dos Novais

João Pessoa, 25 de março de 2022

1. OBJETIVO

Este documento tem como objetivo estabelecer os parâmetros, especificações e critérios a serem considerados na concepção do projeto da estrutura em concreto armado e alvenaria estrutural da residência multifamiliar de médio padrão localizada na RUA SANTO ANTONIO SN - BAIRRO DOS NOVAIS - JOÃO PESSOA/PB.

A concepção do projeto da estrutura contempla as características e objetivos de uso fornecidos pelo contratante e constante no projeto arquitetônico que a residência possui dois blocos, com 4 pavimentos, um andar de apoio da caixa d'água e um de cobertura da caixa d'água. cada.

Caracterização da Obra:

Segundo estudos de solos pelo método SPT, o terreno possui um solo predominantemente composto por areia (fina e grossa), que caracteriza uma resistência mediana ao solo, considerando que, por ser um edifício, possui cargas elevadas, assim, foi definido a utilização de fundação profunda, com estacas escavadas de 10m de comprimento.

A infraestrutura foi concebida em concreto armado (estacas e vigas baldrame), e todas sua superestrutura concebida em alvenaria estrutural (com exceção das escadas, que foram em concreto armado).

No caso de o contratante submeter este projeto à Avaliação Técnica do Projeto, este deverá comunicar à André Rodrigues de Vasconcelos. A Avaliação Técnica do Projeto deverá se pautar nas recomendações da ABECE para esta atividade.

3. NORMAS TÉCNICAS DE REFERÊNCIA

3.1. Normas Essenciais

ABNT NBR 05674:2012	Manutenção de edificações
ABNT NBR 06118:2014	Projeto de estruturas de concreto — Procedimento
ABNT NBR 06120:1980	Cargas para o cálculo de estruturas de edificações
ABNT NBR 06123:1988	Forças devidas ao vento em edificações
ABNT NBR 08681:2003	Ações e segurança nas estruturas – Procedimento
ABNT NBR 14432:2001	Exigências de resistência ao fogo de elementos construtivos de edificações – Procedimento
ABNT NBR 15200:2012	Projeto de estruturas de concreto em situação de incêndio
ABNT NBR 15421:2006	Projeto de Estruturas Resistentes a Sismos – Procedimento
ABNT NBR 15575:2013	Coletânea de Normas Técnicas - Edificações Habitacionais — Desempenho
IT08:2011	Segurança Estrutural nas Edificações — Resistência ao Fogo dos Elementos de
	Construção, do Corpo de Bombeiros da Polícia Militar do Estado de São Paulo.
ABNT NBR 16868-1:2020	ALVENARIA ESTRUTURAL: PARTE 1 - PROJETO
ABNT NBR 16868-2:2020	ALVENARIA ESTRUTURAL: PARTE 2 - EXECUÇÃO E CONTROLE
ABNT NBR 16868-3:2020	ALVENARIA ESTRUTURAL: PARTE 3 - MÉTODOS DE ENSAIO

3.2. Normas Complementares

ABNT NBR 7680:2015	Concreto – Extração preparo ensaio e análise de testemunhos de estruturas de concreto – Parte 1 - Resistência à compressão axial
ABNT NBR 12655:2015	Concreto de cimento Portland - Preparo controle recebimento e aceitação - procedimento
ABNT NBR 14037:2011	Diretrizes para elaboração de manuais de uso, operação e
Versão Corrigida:2014	manutenção das edificações – Requisitos para elaboração e apresentação dos conteúdos
ABNT NBR 14931:2004	Execução de estruturas de concreto – Procedimento
ABNT NBR 15696:2009	Formas e escoramentos para estrutura de concreto – Projeto, dimensionamento e procedimentos executivos

ABNT NBR 16280:2015	Reforma em edifi cações – Sistema de gestão de reformas –
	Requisitos

3.3. Normas Específicas

ABNT NBR 6136:2007	Blocos vazados de concreto simples para alvenaria – Requisitos
ABNT NBR 7187:2003	Projeto de pontes de concreto armado e de concreto protendido
	– Procedimento
ABNT NBR 7188:2013	Carga móvel rodoviária e de pedestres em pontes, viadutos,
	passarelas e outras estruturas
ABNT NBR 8800:2008	Projeto de estruturas de aço e de estruturas mistas de aço e
ADIN1 INDIX 8000.2000	concreto de edifícios
ABNT NBR 9062:2006	Projeto e execução de estruturas de concreto pré-moldado
ABNT NBR 9452:2012	Vistorias de pontes e viadutos de concreto – Procedimento
ABNT NBR 9607:2012	Prova de carga em estruturas de concreto armado e protendido
	Procedimento
ABNT NBR 9783:1987	Aparelhos de apoio de elastômero fretado
ABNT NBR 14323:2013	Projeto de estruturas de aço e de estruturas mistas de aço e
	concreto
	de edifícios em situação de incêndio
ABNT NBR 14861:2011	Lajes alveolares pré-moldadas de concreto protendido – Requisitos
	e procedimentos
ABNT NBR 15961:2011	Alvenaria estrutural – Blocos de concreto – Parte 1 e 2
ABNT NBR 15812:2010	Alvenaria estrutural – Blocos cerâmicos – Parte 1 e 2
ABNT NBR 16055:2012	Parede de concreto moldada no local para a construção de
	edificações
ABNT NBR 16239:2013	Projeto de estruturas de aço e de estruturas mistas de aço e
	concreto
ADMIT NOD ASSESSMENT	de edificações com perfis tubulares
ABNT NBR 16280:2014	Reforma em edificações – Sistema de gestão de reformas –
	Requisitos
IT06:2011	Acesso de viatura na edificação e áreas de risco

4. EXIGÊNCIAS DE DURABILIDADE

4.1. Vida Útil de Projeto

Conforme prescrição da NBR 15575-2 Edificações habitacionais -Desempenho Parte 2: Requisitos para os sistemas estruturais, a Vida Útil de Projeto dos sistemas estruturais executados com base neste projeto é estabelecida em 50 anos.

Entende-se por Vida Útil de Projeto, o período estimado de tempo para o qual este sistema estrutural está sendo projetado, a fim de atender aos requisitos de desempenho da NBR 15575-2.

Foram considerados e atendidos neste projeto os requisitos das normas pertinentes e aplicáveis a estruturas de concreto, o atual estágio do conhecimento no momento da elaboração do mesmo, bem como as condições do entorno, ambientais e de vizinhança desta edificação, no momento das definições dos critérios de projeto.

Outras exigências constantes nas demais partes da NBR 15575, que impliquem em dimensões mínimas ou limites de deslocamentos mais rigorosos que os que constam da NBR 6118, para os elementos do sistema estrutural, deverão ser fornecidas pelos responsáveis das outras especialidades envolvidas no projeto da edificação, sendo estes responsáveis por suas definições.

Para que a Vida Útil de Projeto tenha condições de ser atingida, se faz necessário que a execução da estrutura siga fielmente todas as prescrições constantes neste projeto, bem como todas as normas pertinentes à execução de estruturas de concreto e as boas práticas de execução.

O executor da obra deverá se assegurar de que todos os insumos utilizados na produção da estrutura atendem as especificações exigidas neste projeto, bem como em normas específicas de produção e controle, através de relatórios de ensaios que atestem os parâmetros de qualidade e resistência; o executor das obras deverá também manter registros que possibilitem a rastreabilidade destes insumos.

Eventuais não conformidades executivas deverão ser comunicadas a tempo ao Calculista, indicado neste documento, para que venham a ser corrigidas, de forma a não prejudicar a qualidade e o desempenho dos elementos da estrutura.

Atenção especial deverá ser dada na fase de execução das obras, com relação às áreas de estocagem de materiais e de acessos de veículos pesados, para que estes não excedam a capacidade de carga para as quais estas áreas foram dimensionadas, sob o risco de surgirem deformações irreversíveis na estrutura.

Será interessante que o executor informe ao futuro morador à ler e seguir o Manual de Uso Operação e Manutenção do Imóvel, entregue ao usuário do imóvel juntamente com o projeto e esse documento, instruções referentes à manutenção que deverá ser realizada, necessária para que a Vida Útil de Projeto tenha condições de ser atingida.

Desde que haja um bom controle e execução correta da estrutura, que seja dado o uso adequado à edificação e que seja cumprida a periodicidade e correta execução dos processos de manutenção especificados no Manual de Uso, Operação e Manutenção do Imóvel, a Vida Útil de Projeto do sistema estrutural terá condições de ser atingida e até mesmo superada.

A Vida Útil de Projeto é uma estimativa e não deve ser confundida com a vida útil efetiva ou com prazo de garantia. Ela pode ou não ser confirmada em função da qualidade da execução da estrutura, da eficiência e correção das atividades de manutenção periódicas, de alterações no entorno da edificação, ou de alterações ambientais e climáticas.

4.2. Classes de Agressividade

Classe de agressividade ambiental	Agressividade	Classificação geral do tipo de ambiente para efeito de projeto	Risco de deterioração da estrutura
I	Fraca	Rural	Insignificante
=	Moderada	Submersa, urbana ^{a, b} , marinha ^a	Pequeno
III	Forte	Industrial ^{a,b,c}	Grande
IV	Muito Forte	Respingos de Maré	Elevado

a) Pode-se admitir um microclima com uma classe de agressividade mais branda (uma classe acima) para ambientes internos secos (salas, dormitórios, banheiros, cozinhas e áreas de serviço de apartamentos residenciais e conjuntos comerciais ou ambientes com concreto revestido com argamassa e pintura).

Tabela NBR 6118:2014

Justificativa:

Foi adotado a classe de agressividade II (moderada) por se tratar de uma residência baixa, em um local sem muitas edificações vizinhas, sem tanta interferência de cidade, mas também não tão rural quanto uma fazenda.

b) Pode-se admitir uma classe de agressividade mais branda (uma classe acima) em obras em regiões de clima seco, com umidade média relativa do ar menor ou igual a 65%, partes da estrutura protegidas de chuva em ambientes predominantemente secos ou regiões onde raramente chove.

c) Ambientes quimicamente agressivos, tanques industriais, galvanoplastia, branqueamento em indústrias de celulose e papel, armazéns de fertilizantes e indústrias químicas.

Correspondência entre a classe de agressividade e qualidade do concreto:

Concreto*	Concreto* Tipo		Classe de agressividade			
		I	II	III	IV	
Relação água/cimento em massa	Concreto Armado	≤ 0,65	≤ 0,60	≤ 0,55	≤ 0,45	
	Concreto Protendido	≤ 0,60	≤ 0,55	≤ 0,50	≤ 0,45	
Classe do Concreto (ABNT NBR 8953)	Concreto Armado	≥ C20	≥ C25	≥ C30	≥ C40	
	Concreto Protendido	≥ C25	≥ C30	≥ C35	≥ C40	

^{*}O concreto empregado na execução das estruturas deve cumprir os requisitos estabelecidos na ABNT NBR 12655.

Correspondência entre a classe de agressividade e qualidade do concreto:

	Componente	Classe de agressividade ambiental (tabela 6.1)				
Tipo de estrutura	ou elemento	Ι	П	Ш	l∧ c	
Tipo de estrutura		Cobrimento nominal Mm				
	Laje ^b	20	25	35	45	
Concreto armado	Viga/Pilar	25	30	40	50	
Concreto annado	Elementos estruturais em contato com o solo ^d	30		40	50	
Concreto	Laje	25	30	40	50	
protendido ^a	Viga/Pilar	30	35	45	55	

a) Cobrimento nominal da bainha ou dos fios, cabos e cordoalhas. O cobrimento da armadura passiva deve respeitar os cobrimentos para concreto armado.

Observação Importante quanto à durabilidade:

Deve ser garantida a resistência do concreto correspondente à Classe de Agressividade, independente da capacidade de a estrutura absorver valores menores, quando da verificação de concreto não conforme.

b) Para a face superior de lajes e vigas que serão revestidas com argamassa de contrapiso, com revestimentos finais secos tipo carpete e madeira, com argamassa de revestimento e acabamento, como pisos de elevado desempenho, pisos cerâmicos, pisos asfálticos e outros, as exigências desta tabela podem ser substituídas por 7.4.7.5, respeitado um cobrimento nominal ≥ 15 mm.

c) Nas superfícies expostas a ambientes agressivos, como reservatórios, estações de tratamento de água e esgoto, condutos de esgoto, canaletas de efluentes e outras obras em ambientes química e intensamente agressivos, devem ser atendidos os cobrimentos da classe de agressividade IV.

d) No trecho dos pilares em contato com o solo junto aos elementos de fundação, a armadura deve ter cobrimento nominal ≥ 45 mm.

Na análise de concreto não conforme deve ser justificada, por profissional habilitado, a manutenção da durabilidade da estrutura.

5. DADOS DE ENTRADA DO PROJETO

Os elementos de conformidade desse projeto estrutural face aos projetos de arquitetura, terraplenagem, instalações, tais como cotas, níveis e dimensões das peças estruturais devem ser validados pelos arquitetos responsáveis pelo desenvolvimento do projeto executivo, devendo ser respeitadas as normas citadas no item 1 acima, em especial a ABNT NBR 15575.

O presente projeto considerou, para os distintos ambientes, os usos indicados no projeto de arquitetura e/ou especificações expressamente indicadas pelo contratante. Alterações nos usos que impliquem em alterações nas cargas deverão ser informadas ao responsável técnico pelo projeto estrutural.

6. AÇÕES NA ESTRUTURA

6.1. Peso próprio da estrutura de concreto

Os valores de peso próprio da estrutura foram calculados com as dimensões nominais dos elementos e com o valor médio do peso específico do concreto armado especificado como 2500 kg/m³ pela ABNT NBR 6118.

6.2. Peso próprio das alvenarias

O peso próprio das alvenarias foi considerado de acordo com a Tabela 2 da ABNT NBR 6120:2019, conforme abaixo. Estas cargas foram consideradas na posição indicada nas plantas de arquitetura.

Tabela 2 - Alvenarias

Alvenaria	Espessura nominal do elemento	Peso - Espessura de revestimento por face kN/m²		
	cm	0 cm	1 cm	2 cm
ALVENARIA ESTRUTURAL	100			or
Bloco de concreto vazado (Classes A e B – ABNT NBR 6136)	14 19	2,0 2,7	2,3 3,0	2,7 3,4
Bloco cerâmico vazado com paredes maciças (Furo vertical - ABNT NBR 15270-1)	14	2,0	2,3	2,7
Bloco cerâmico vazado com paredes vazadas (Furo vertical - ABNT NBR 15270-1)	9 11,5 14 19	1,1 1,4 1,7 2,3	1.5 1.8 2.1 2.7	1.9 2.2 2.5 3.1
Tijolo cerâmico maciço (ABNT NBR 15270-1)	9 11,5 14 19	1,6 2,1 2,5 3,4	2,0 2,5 2,9 3,8	2,4 2,9 3,3 4,2
Bloco sílico-calcário vazado (Classe E - ABNT NBR 14974-1)	9 14 19	1,1 1,5 1,9	1,5 1,9 2,3	1,9 2,3 2,7
Bloco sílico-calcário perfurado (Classes E, F e G - ABNT NBR 14974-1)	11,5 14 17,5	1,9 2,1 2,8	2,3 2,5 3,2	2,7 2,9 3,6
ALVENARIA DE VEDAÇÃO		/		9
Bloco de concreto vazado (Classe C – ABNT NBR 6136)	6,5 9 11,5 14 19	1.0 1,1 1,3 1,4 1,8	1,4 1,5 1,7 1,8 2,2	1.8 1.9 2.1 2.2 2.6
Bloco cerâmico vazado (Furo horizontal - ABNT NBR 15270-1)	9 11,5 14 19	0,7 0,9 1,1 1,4	1,1 1,3 1,5 1,8	1,6 1,7 1,9 2,3
Bloco de concreto celular autoclavado (Classe C25 – ABNT NBR 13438)	7,5 10 12,5 15 17.5	0,5 0,6 0,8 0,9 1,1	0,9 1,0 1,2 1,3 1.5	1,3 1,4 1,6 1,7 1,9 2,0
Bloco de vidro (decorativo, sem resistência ao fogo)	8	0.8	-	-

NOTA Na composição de pesos de alvenarias desta Tabela foi considerado o seguinte:

- argamassa de assentamento vertical e horizontal de cal, cimento e areia com 1 cm de espessura e peso específico de 19 kN/m³;
- revestimento com peso específico médio de 19 kN/m3;
- proporção de um meio bloco para cada três blocos inteiros;
- sem preenchimento de vazios (com graute etc.).

Neste projeto, em comum acordo com o contratante, foram consideradas em todos os pavimentos alvenaria estrutural de bloco cerâmico vazado com paredes maciças, com 2 cm de revestimento em cada face.

Caso as espessuras e revestimentos de alvenaria forem diferentes dos indicados acima, o responsável técnico pelo projeto estrutural deve ser comunicado, para verificar possíveis alterações nas especificações de projeto. Assume-se não haver preenchimentos de vazios internos às alvenarias.

6.3. Peso próprio de outros componentes construtivos

Os pesos próprios de outros componentes construtivos foram considerados conforme informações fornecidas pelo contratante ou, na falta destas, conforme valores apresentados pela ABNT NBR 6120.

6.4. Ações variáveis

Os valores das ações variáveis devem respeitar os valores característicos nominais mínimos indicados na ABNT NBR 6120, conforme indicados no projeto de arquitetura e/ou especificações USOS expressamente indicadas pelo contratante. Alterações nos usos que impliquem em alterações nas cargas deverão ser informadas ao responsável técnico pelo projeto estrutural.

6.5. Ações de veículos

Conforme ABNT NBR 6120, a seleção da categoria de projeto de garagens e demais áreas de circulação de veículos deve ser feita em função da altura livre disponível do acesso de veículos e do peso bruto total (PBT). Caso o usuário da edificação disponha de meios para controle dos tipos de veículos que acessam a edificação, é possível projetar para categorias diferentes daquela em função da altura disponível. As ações referentes a cada categoria são apresentadas na tabela abaixo.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Categoria	PBT kN	Carga uniformemente distribuída kN/m ²	Altura máx. m	Cargas concentradas Q _k kN	Força horizontal F _x ^e kN	Força horizontal Fy ^e kN	Altura H de aplicação das forças F _X e F _y ^e m
l a	≤ 30	3	2,3	12 b	100	50	0,5
∥ f	≤ 90	5	2,6	60 (Figura 3)	180	90	0,5
III	≤ 160	7	3,0	100 (Figura 4)	240	120	1,0
IV	> 160	10	> 3,0	170 (Figura 5) 255 (Figura 6)	320	160	1,0
V c	≤ 230	10	≥ 4,5	170 (Figura 5)	320 d	160 d	1,0 d

- As ações da Categoria I são adequadas também para veículos de passeio blindados, desde que a blindagem corresponda a um acréscimo de no máximo 15 % do PBT do veículo.
- A carga concentrada deve ser considerada atuando em uma região de 10 cm x 10 cm.
- Categoria correspondente a viaturas de bombeiros. As cargas podem ser consideradas especiais, conforme a ABNT NBR 8681, se atuarem apenas em situações de combate a incêndio. Em outras situações, devem ser consideradas como ações variáveis normais, conforme a ABNT NBR 8681. A verificação das cargas concentradas contempla a atuação de patolas de caminhões auto-escada.
- A verificação das forças horizontais, neste caso, só precisa ser feita caso a atuação das viaturas de bombeiros seja considerada uma ação variável normal, conforme a ABNT NBR 8681.
- As forças horizontais devem ser consideradas como excepcionais, conforme a ABNT NBR 8681. O índice x indica uma força atuando na direção paralela ao fluxo dos veículos, o índice y indica uma força atuando na direção perpendicular ao fluxo dos veículos. As forças horizontais podem ser consideradas atuando de forma não concomitante em uma faixa de 25 cm de altura e 150 cm de largura ou a largura da face do pilar em questão, o que for menor (Figura 7). Alternativamente, podem ser previstas barreiras que resistam aos mesmos valores de forças horizontais da categoria.
- As ações da Categoria II são adequadas também para carros-fortes e UTI móveis.

Neste projeto, foi adotada categoria I.

6.6. Ações de construção

As ações de construção são consideradas nas estruturas em que haja risco de ocorrência de estados-limites durante esse período. Essas cargas são consideradas como especiais, conforme ABNT NBR 8681.

6.7. Carregamentos adotados

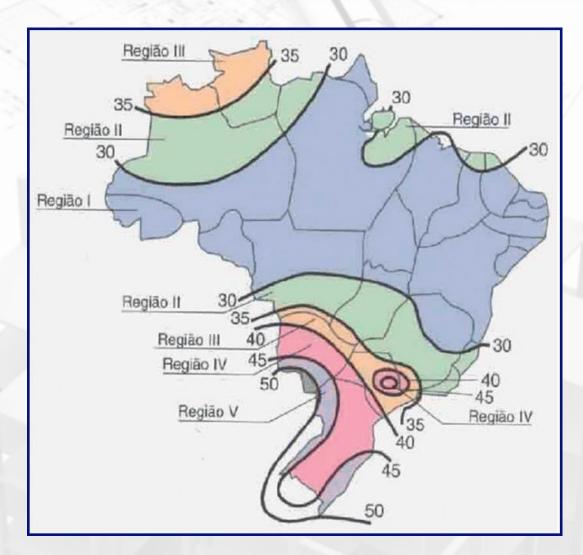
Qualquer alteração nos valores e locais indicados acima devem ser previamente comunicadas ao responsável técnico pelo projeto estrutural, para verificação da necessidade de alterações em projeto.

6.7.1. Tabela de cargas da residência:

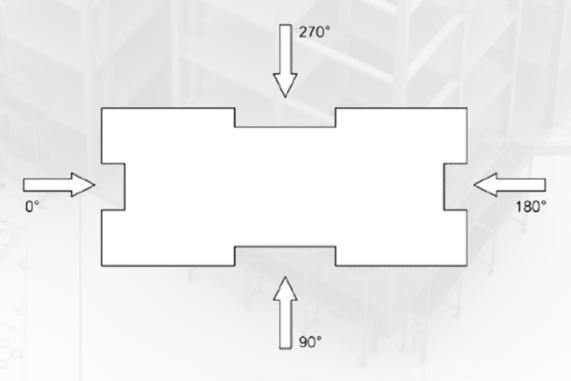
CARREGAMENTOS						
PAVIMENTO	VARIÁVI (UTILIZAÇ)		PERMANENTES			
Cobertura	0.1	tf/m²	Impermeabilização + proteção mecânica			
Barrilete	0.1	kN/m²	Geral (impermeabilização + proteção mecânica); Barrilete (equipamentos); Reservatórios			

A seguir são apresentadas as cargas médias utilizadas em cada um dos pavimentos para o dimensionamento da estrutura.

A "carga média" de um pavimento é a razão entre as todas as cargas verticais características (peso-próprio, permanentes acidentais) pela área total estimada do pavimento.


Pavimento	Peso Próprio (tf/m²)	Permanente (tf/m²)	Acidental (tf/m²)
Cobertura	0.34	0.46	0.08
Laje C. D'água	0.44	1.06	0.16
Depósito	0.91	2.48	0.00
1º Andar	0.51	0.49	0.09
Laje Superior	0.42	0.24	0.09
Térreo Chalé	0.75	3.11	-0.00
Térreo	0.67	2.70	0.04
Fundação	0.00	0.00	0.00

6.8. Vento

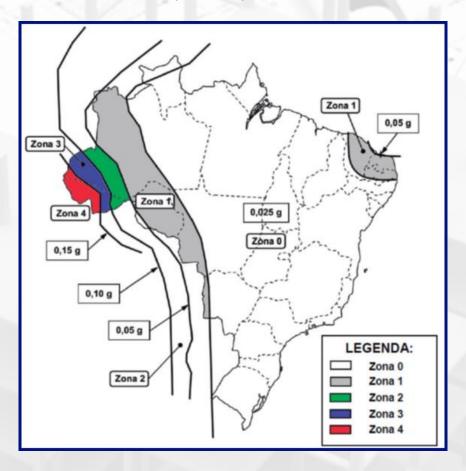

O valor da velocidade básica do vento, V0, foi adotado pela figura que se segue, reproduzida da ABNT NBR 6123:1988.

ANDRÉ RODRIGUES Engenheiro Estrutural

Direções do vento adotadas:

A seguir são apresentados os fatores de cálculo utilizados para definição das ações de vento incidentes sobre a estrutura.

- Velocidade básica: 30 m/s;
- Fator topográfico (\$1): 1,0;
- Categoria de rugosidade (S2): IV Terrenos com obstáculos pouco espaçados. zona florestal, industrial, numerosos e urbanizada, parques, subúrbios densos;
- B Maior dimensão horizontal ou vertical 20.0 m < D < 50.0 m;
- Fator estatístico (S3): 1,00 Edificações em geral. Hotéis, residências, comércio e indústria com alta taxa de ocupação.


Na tabela que se segue são apresentados os valores de coeficiente de arrasto, área de projeção do edifício e pressão calculada com os fatores apresentados anteriormente:

Caso	Ângulo (°):	Coef. arrasto	Área (m²):	Pressão (tf/m²):
8	90	2.05	190.5	0.072
9	270	2.05	190.5	0.072
10	0	2.05	62.6	0.073
11	180	2.05	62.6	0.073

6.9. Sismos

Mapeamento da aceleração sísmica horizontal característica no Brasil para terrenos da classe B ("rocha").

Para as estruturas localizadas na zona sísmica "0", nenhum requisito de resistência sísmica é exigido, conforme indicado na ABNT NBR 15421:2006

7. ESTABILIDADE GLOBAL

A seguir são apresentados os principais parâmetros de instabilidade obtidos da análise estrutural do edifício.

Parâmetro	Valor
GamaZ	1.01
FAVt	1.01
Alfa	0.83

ANDRÉ RODRIGUES Engenheiro Estrutural

Na tabela anterior são apresentados somente os valores máximos obtidos para os coeficientes.

GamaZ é o parâmetro para avaliação da estabilidade de uma estrutura. Ele NÃO considera os deslocamentos horizontais provocados pelas cargas verticais (calculado p/ casos de vento), conforme definido no item 15.5.3 da NBR 6118.

FAVt é o fator de amplificação de esforços horizontais que pode considerar os deslocamentos horizontais gerados pelas cargas verticais (calculado p/ combinações ELU com a mesma formulação do GamaZ).

Alfa é o parâmetro de instabilidade de uma estrutura reticulada conforme definido pelo item 15.5.2 da NBR 6118.

Classificação da estrutura

Baseado nos valores apresentados acima, a estrutura pode ser avaliada da seguinte forma:

- Parâmetro adotado na análise do edifício (GamaZ): 1,01;
- Tipo da estrutura (Alfa): 0,62.

COMPORTAMENTO EM SERVIÇO - ELS

Deslocamentos do modelo estrutural global

Para o edifício em questão os temos os seguintes valores:

- Altura total do edifício H: 15.6 m;
- Altura entre pisos Hi: 2.80 m.

Com os resultados obtidos pela análise estrutural obteve-se os seguintes valores de deslocamentos horizontais do modelo estrutural global:

Deslocamento	Valor máximo (cm)	Referência(cm)	
Topo do edifício (cm)	(H / 2838) 0.37	(H / 1700) 0.62	
Entre pisos (cm)	(Hi / 1154) 0.19	(Hi / 850) 0.26	

Os valores de referência utilizados são prescritos pelo NBR 6118 através do item 13.3.

Análise dinâmica do modelo estrutural global

Para o edifício em questão os temos os seguintes valores:

Caso	Acelerações X (m/s²)	Acelerações Y (m/s²)	Percepção humana
8	0.000	0.000	Imperceptível
9	0.000	0.000	Imperceptível
10	0.000	0.000	Imperceptível
11	0.000	0.000	Imperceptível

A escala de conforto utilizada segue os seguintes passos: Imperceptível - Perceptível -Incômoda - Muito Incômoda - Intolerável.

8. CONSUMOS

8.1 FUNDAÇÕES EM CONCRETO ARMADO

8.1.1 BLOCO A

Consumo de Concreto

PAVIMENTO	Concreto (m³)			
	Vigas	Estacas		
FUNDAÇÃO	24.49	32.09		

Consumo de Formas

PAVIMENTO	Fôrmas (m²)
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Vigas
FUNDAÇÃO	207.23

Resumo de Consumos e taxas

	Concreto		Fôrma	s	Aço		
Elementos	Consumo (m3)	Taxa (m3/m2)	Consumo (m2)	Taxa (m2/m2)	Consumo (kgf)	Taxa (kgf/m2)	Taxa (kgf/m3)
Vigas - Fundação	24.49	0.52	207.23	4.386	2250	47.63	91.89

Consumo de aço por bitola (Kg)

Dooto	Bitola (mm)							
Pasta	6.3	8	10	12.5	16	20		
Vigas	369	30	275	228	917	431		
Estacas	10	0	127	0	0	0		
TOTAL	379	30	402	228	917	431		

8.1.2 BLOCO B

Consumo de Concreto

PAVIMENTO	Concreto (m³)			
	Vigas	Estacas		
FUNDAÇÃO	38.53	46.42		

Consumo de Formas

PAVIMENTO	Fôrmas (m²)
TAVIMENTO .	Vigas
FUNDAÇÃO	321.46

Resumo de Consumos e taxas

		Concreto		Fôrma	s	Aço		
	Elementos	Consumo (m3)	Taxa (m3/m2)	Consumo (m2)	Taxa (m2/m2)	Consumo (kgf)	Taxa (kgf/m2)	Taxa (kgf/m3)
	Vigas - Fundação	38.53	0.55	321.46	4.57	3821	54.32	99.18

Consumo de aço por bitola (Kg)

Pasta			Bitola	a (mm)		
Pasta	6.3	8	10	12.5	16	20
Vigas	373	254	371	416	900	1508
Estacas	15	0	183	0	0	0
TOTAL	388	254	554	416	900	1508

8.2. SUPERESTRUTURA EM ALVENARIA ESTRUTURAL

	Blocos - TÉRREO								
Nome	Nome Resistência (tf/m2)		Descrição	Quantidade					
Q3015	1000	600	Bloco inteiro 29 x 14 x 19	14060					
Q1515	1000	600	Meio bloco 14 x 14 x 19	1257					
СОМР9	1000	600	Compensador 09 x 14 x 19	1223					
Q4515F	1000	600	Bloco inteiro 44 x 14 x 19	935					
COMP4	1000	600	Compensador 04 x 14 x 19	1681					
Totais	-	-	-	19156					

Concreto, Argamassa e Graute - TÉRREO					
- Resistência m3					
Argamassa	8000	12.14			
Graute	20000	8.96			

Aço - TÉRREO							
Bitola <6.3mm 6.3mm 8mm 10mm 12.5mm 16mm >16mr					>16mm		
Pesos (kgf)	0	8	0	2350.1	50.5	16.9	0

Blocos - TIPO (multiplicar por 2)						
Nome	Resistência (tf/m2)	fp (tf/m2)	Descrição	Quantidade		
Q3015	1000	600	Bloco inteiro 29 x 14 x 19	13603		
Q1515	1000	600	Meio bloco 14 x 14 x 19	1205		
СОМР9	1000	600	Compensador 09 x 14 x 19	1139		
Q4515F	1000	600	Bloco inteiro 44 x 14 x 19	986		
COMP4	1000	600	Compensador 04 x 14 x 19	1696		
Totais	-	•	-	18629		

ANDRÉ RODRIGUES Engenheiro Estrutural

Concreto, Argamassa e Graute - TIPO (multiplicar por 2)					
-	Resistência (tf/m2) m3				
Argamassa	8000	12.35			
Graute	20000	8.35			

Aço - TIPO (Multiplicar por 2)							
Bitola <6.3mm 6.3mm 8mm 10mm 12.5mm 16mm >16mm					>16mm		
Pesos (kgf)	0	3.1	0	2624	0	50.7	0

Blocos - ÚLTIMO TIPO						
Nome	Resistência (tf/m2)	fp (tf/m2)	Descrição	Quantidade		
Q3015	1000	600	Bloco inteiro 29 x 14 x 19	14289		
Q1515	1000	600	Meio bloco 14 x 14 x 19	1257		
СОМР9	1000	600	Compensador 09 x 14 x 19	1214		
Q4515F	1000	600	Bloco inteiro 44 x 14 x 19	966		
COMP4	1000	600	Compensador 04 x 14 x 19	1749		
Totais	-	-	-	19475		

Concreto, Argamassa e Graute - ÚLTIMO TIPO				
-	Resistência (tf/m2)	m3		
Argamassa	8000	12.35		
Graute	20000	8.5		

Aço - ÚLTIMO TIPO						
Bitola <10mm 10mm 12.5 16 >16mm						
Pesos (kgf)	0	2244.3	0	33.8	0	

Blocos - LAJE CX D'ÁGUA						
Nome	Resistência (tf/m2)	fp (tf/m2)	Quantidade			
Q3015	1000	600	Bloco inteiro 29 x 14 x 19	1694		
Q1515	1000	600	Meio bloco 14 x 14 x 19	7		
COMP4	1000	600	Compensador 04 x 14 x 19	28		
Totais	-	-	-	1729		

	V IN		
Engen	heiro	Estru	itura

Concreto, Argamassa e Graute - LAJE CX D'ÁGUA					
-	- Resistência (tf/m2) m3				
Argamassa	8000	1.17			
Graute	20000	0.33			

Aço - LAJE CX D'ÁGUA							
Bitola < 10mm 10mm 12.5mm >12.5mm							
Pesos (kgf)	0	134.8	25.6	0			

	Blocos - COBERTURA									
Nome	Resistência (tf/m2)	fp (tf/m2)	Descrição	Quantidade						
Q3015	1000	600	Bloco inteiro 29 x 14 x 19	928						
Q1515	1000	600	Meio bloco 14 x 14 x 19	16						
Q4515F	1000	600	Bloco inteiro 44 x 14 x 19	20						
COMP4	1000	600	Compensador 04 x 14 x 19	24						
Totais	-	-	-	988						

Concreto, Argamassa e Graute - COBERTURA						
-	Resistência (tf/m2) m3					
Argamassa	8000	0.67				
Graute	20000	0.24				

Aço - COBERTURA						
Bitola	< 10mm 10mm >10mm					
Pesos (kgf)	Pesos (kgf) 0		0			

9. OUTROS REQUISITOS DA NORMA DE DESEMPENHO

Embora conste na parte 2 da NBR 15575:2013 (Desempenho Estrutural) que as alvenarias de vedação devem resistir aos impactos de corpo mole e corpo duro, esse dimensionamento não é escopo do projeto estrutural.

O dimensionamento para o atendimento destes ensaios deverá ser desenvolvido em projeto específico por profissionais especializados em projetos de alvenarias.

Nos projetos das alvenarias de vedação e de compartimentação deverão ser previstos o encunhamento junto às lajes e vigas de maneira a permitir as deformações diferidas destas peças, conforme os valores que constam nos desenhos das curvas de isovalores de deslocamentos.

Os projetos de alvenaria de vedação devem contemplar ainda as movimentações decorrentes da fluência e retração do concreto, assim como decorrentes de carregamentos adicionais e da variabilidade de suas características mecânicas que introduzem deformações impostas nas vedações.

As considerações de incêndio, acústica e térmica também não são escopo do projetista de estrutura.

As espessuras das lajes definidas neste projeto atendem aos estados limites últimos, bem como aos estados limites de serviço, assim como a espessura mínima para a compartimentação em caso de incêndio.

O desempenho acústico e térmico das lajes deverá ser objeto de análise por profissionais especializados nestas áreas.

10. MATERIAIS

10.1. Concreto Armado

Classe de resistência	C20	C25	C30	C35	C40	C45	C50	C60	C70	C80	C90
E _{ci} (GPa)	25	28	31	33	35	38	40	42	43	45	47
E _{cs} (GPa)	21	24	27	29	32	34	37	40	42	45	47
α_{i}	0,85	0,86	0,88	0,89	0,90	0,91	0,93	0,95	0,98	1,00	1,00

Tabela 6.1 - Valores estimados de módulo de elasticidade em função da resistência característica à compressão do concreto (considerado o uso de granito como agregado graúdo) - NBR 6118:2014

ELEMENTOS ESTRUTURAIS EM GERAL:

PROPRIEDADE	Todos os Pavimentos
Resistência Característica	25 MPa
Resistência fckj para etapas	20 MPa
construtivas	
Módulo de deformação tangente	24.15GPa
inicial mínimo	
Fator água-cimento máximo	0,6

Observação Importante:

Para a produção do concreto foi considerada a utilização de agregado graúdo de origem granítica (granito) - mais comum em nossa região - em especial na avaliação do módulo de elasticidade. Caso sejam utilizados outros tipos de agregados graúdos, o valor do módulo de elasticidade deverá ser ajustado conforme item 8.2.8 da NBR 6118:2014, devendo ser definido antes do início do projeto.

Recomendação Importante:

Para o bom desempenho da estrutura de concreto, e também redução de custo da mesma, recomenda-se a contratação de tecnologista do concreto com o objetivo de desenvolver o traço do concreto a ser empregado na obra, bem como orientar sobre os procedimentos de cura e desforma.

10.2. Alvenaria Estrutural

Tabela F.1 — Recomendação para especificação dos materiais da alvenaria estrutural

		fbk	fa	fgk		NJ.	f _{pk}	f _{pk} *	Espessur
Tipo de bloco		MPa		f _{pk} /f _{bk}	f _{pk} */f _{pk}	MPa		mínima de parede do bloco mm	
		3,0	4,0	15,0	0,80	2,00	2,4	4,8	25
		4,0	4,0	15,0	0.80	2,00	3.2	6,4	25
1/1		6,0	6,0	15,0	0,75	1,75	4,5	7,9	25
		8,0	6,0	20,0	0,75	1,75	6,0	10,5	25
DI		10,0	8,0	20,0	0,70	1,75	7,0	12,3	25
Bloco vazado de concreto, conforme a		12,0	8,0	25,0	0,70	1,60	8,4	13,4	25
ABNT NBR 6136	Y	14,0	12,0	25,0	0,70	1,60	9,8	15,7	25
(ref. 14 × 39 cm)		16,0	12,0	30,0	0,65	1,60	10,4	16,6	25
		18,0	14,0	30,0	0,65	1,60	11,7	18,7	25
		20,0	14,0	35,0	0,60	1,60	12,0	19,2	25
		22,0	18,0	35,0	0,55	1,60	12,1	19,4	25
		24,0	18,0	40,0	0,55	1,60	13,2	21,1	25
Diago sovêmico do		4,0	4,0	15,0	0,50	1,60	2,0	3,2	8
Bloco cerâmico de parede vazada,	400	6,0	6,0	15,0	0,50	1,60	3,0	4,8	8
conforme a	100	8,0	6,0	20,0	0,50	1,60	4,0	6,4	8
ABNT NBR 15270-1		10,0	8,0	25,0	0,45	1,60	4,5	7,2	8
(ref. 14 × 29 cm)		12,0	8,0	25,0	0,45	1,60	5,4	8,6	8
Bloco cerâmico de		10,0	8,0	20,0	0,60	1,60	6,0	9,6	22
parede maciça, conforme a		14,0	12,0	25,0	0,60	1,60	8,4	13,4	25
ABNT NBR 15270-1 (ref. 14 × 29 cm)		18,0	15,0	30,0	0,60	1,60	10,8	17,3	30

Para esse edifício em específico, o bloco utilizado foi o de 6MPa, que é o mais comum encontrado na região.

10.3. Aço

Foram utilizadas as seguintes características para o aço estrutural utilizado no projeto:

Tipo de barra	Es (MPa)	fyk (MPa)	Massa específica (kgf/m³)	n1
CA-25	210000	250	7850	1,00
CA-50	210000	500	7850	2,25
CA-60	210000	600	7850	1,40

10.4. Estruturas Metálicas

Não está no escopo do projeto, o dimensionamento de peças metálicas.

11. COBRIMENTOS

Conforme escrito na NBR 6118:2014 item 7.4.7.4, quando houver um adequado controle de qualidade e rígidos limites de tolerância da variabilidade das medidas durante a execução, pode ser adotado o valor Δc = 5mm (cobrimento mínimo acrescido da tolerância de execução), mas a exigência de controle rigoroso deve ser explicitada nos desenhos de projeto.

Conforme escrito na NBR 6118:2014 item 7.4.7.6, para concretos de classe de resistência superior ao mínimo exigido, os cobrimentos definidos na Tabela 7.2 da NBR 6118:2014 podem ser reduzidos em 5 mm.

CLASSE DE AGRESSIVIDADE AMBIENTAL	CAA II
Lajes (Positiva e Negativa)	2.5 cm
Vigas	3 cm
Pilares	3 cm
Blocos sobre estacas	3 cm
Piscina	4 cm

12. CRITÉRIOS DE MODELO ESTRUTURAL

12.1 Parâmetros de estabilidade global

Neste projeto foram adotados dois tipos de modelos estruturais, modelo de grelha para pavimentos e modelo de pórtico espacial para a análise global, sendo as cargas de grelha transferidas para o pórtico espacial.

No modelo de grelha para os pavimentos, as lajes foram integralmente consideradas, junto com as vigas e os apoios formados pelos pilares, para a análise das deformações, obtenção dos carregamentos verticais que atuarão no pórtico espacial e dimensionamento das armaduras das lajes.

Durante a verificação das deformações, também são realizadas análises através da grelha não-linear, onde por meio de incrementos de carga, as inércias reais das seções são estimadas considerando as armaduras de projeto e a fissuração nos estádios I ou II.

O pórtico espacial é um modelo composto por barras que simulam as vigas e pilares da estrutura, com o efeito de diafragma rígido das lajes devidamente incorporado. Através deste modelo é

possível analisar os efeitos das ações horizontais e redistribuições de esforços na estrutura provenientes dos carregamentos verticais.

As ligações entre pilares e vigas no modelo de pórtico foram flexibilizadas considerando, principalmente no caso de pilaresparede, as vigas associadas aos trechos localizados dos pilares em que se apoiam, e não aos pilares com a sua inércia total, resultando em esforços e deslocamentos mais próximos da realidade.

Para a análise de ELU, conforme item 15.7.3 da ABNT NBR 6118:2014, a não-linearidade física pode ser considerada de forma aproximada, tomando-se como rigidez dos elementos estruturais os valores abaixo, definida por meio da redução da rigidez bruta E_{c.}I_c de acordo com o tipo de elemento estrutural:

- lajes: $(EI)_{sec} = 0.3 E_c.I_c$;
- vigas: $(EI)_{sec} = 0.4 E_c.l_c$ para As' \neq As e $(EI)_{sec} = 0.4 E_c.l_c$ para As' = As;
- pilares: $(EI)_{sec} = 0.8 E_c.I_c.$

12.2. Deslocamentos admissíveis

Foram atendidos os limites para deslocamentos estabelecidos na Tabela 13.3 da NBR 6118:2014.

ANDRÉ RODRIGUES Engenheiro Estrutural

Tipo de efeito	Razão da limitação	Exemplo	Deslocamento a considerar	Deslocamento-limite
Aceitabilidade sensorial	Visual	Deslocamentos visíveis em elementos estruturais	Total	ℓ/250
	Outro	Vibrações sentidas no piso	Devido a cargas acidentais	ℓ/350
	Superfícies que devem drenar água	Coberturas e varandas	Total	ℓ/250 a
<u></u>	Pavimentos	Ginásios e	Total	ℓ/350+ contraflecha b
Efeitos estruturais em serviço	que devem permanecer planos	pistas de boliche	Ocorrido após a construção do piso	ℓ/600
	Elementos que suportam equipamentos sensíveis	Laboratórios	Ocorrido após nivelamento do equipamento	De acordo com recomendação do fabricante do equipamento
Efeitos em elementos não estruturais		Alvenaria, caixilhos e revestimentos	Após a construção da parede	ℓ/500 ^c e 10 mm e θ = 0,0017 rad ^d
		Divisórias leves e caixilhos telescópicos	Ocorrido após a instalação da divisória	ℓ/250 ^c e 25 mm
	Paredes	Movimento lateral de edifícios	Provocado pela ação do vento para combinação frequente (ψ ₁ = 0,30)	H/1 700 e H/850 ^e entre pavimentos ^f
		Movimentos térmicos verticais	Provocado por diferença de temperatura	ℓ/400 ^g e 15 mm

Tipo de efeito	Razão da limitação	Exemplo	Deslocamento a considerar	Deslocamento-limite		
		Movimentos térmicos horizontais	Provocado por diferença de temperatura	H/500		
Efeitos em	Forros	Revestimentos colados	Ocorrido após a construção do forro	<i>L</i> /350		
elementos não estruturais		Revestimentos pendurados ou com juntas	Deslocamento ocorrido após a construção do forro	<i>ℓ</i> /175		
	Pontes rolantes	Desalinhamento de trilhos	Deslocamento provocado pelas ações decorrentes da frenação	H/400		
Efeitos em elementos estruturais	Afastamento em relação às hipóteses de cálculo adotadas	Se os deslocamentos forem relevantes para o eler considerado, seus efeitos sobre as tensões ou sobre a e da estrutura devem ser considerados, incorporando-os estrutural adotado.				

ANDRÉ RODRIGUES

Engenheiro Estrutural

- As superfícies devem ser suficientemente inclinadas ou o deslocamento previsto compensado por contraflechas, de modo a não se ter acúmulo de água.
- Os deslocamentos podem ser parcialmente compensados pela especificação de contraflechas. Entretanto, a atuação isolada da contraflecha não pode ocasionar um desvio do plano maior que ℓ/350.
- O vão ℓ deve ser tomado na direção na qual a parede ou a divisória se desenvolve.
- d Rotação nos elementos que suportam paredes.
- H é a altura total do edificio e H_i o desnível entre dois pavimentos vizinhos.
- f Esse limite aplica-se ao deslocamento lateral entre dois pavimentos consecutivos, devido à atuação de ações horizontais. Não podem ser incluídos os deslocamentos devidos a deformações axiais nos pilares. O limite também se aplica ao deslocamento vertical relativo das extremidades de lintéis conectados a duas paredes de contraventamento, quando Hi representa o comprimento do lintel.
- 9 O valor ℓ refere-se à distância entre o pilar externo e o primeiro pilar interno.

NOTAS

- 1 Todos os valores-limites de deslocamentos supõem elementos de vão ℓ suportados em ambas as extremidades por apoios que não se movem. Quando se tratar de balanços, o vão equivalente a ser considerado deve ser o dobro do comprimento do balanço.
- 2 Para o caso de elementos de superfície, os limites prescritos consideram que o valor ℓ é o menor vão, exceto em casos de verificação de paredes e divisórias, onde interessa a direção na qual a parede ou divisória se desenvolve, limitando-se esse valor a duas vezes o vão menor.
- 3 O deslocamento total deve ser obtido a partir da combinação das ações características ponderadas pelos coeficientes definidos na Seção 11.
- 4 Deslocamentos excessivos podem ser parcialmente compensados por contraflechas.

12.4. Cargas das Estacas:

12.4.1. Bloco A

Elemento	Fz (tf)	Mx (tf*m)	My (tf*m)
E1	17,27	17,27	3,68
E2	26,50	26,49	6,38
E3	26,72	26,72	6,57
E4	17,12	17,12	3,60
E11	23,79	23,81	-1,33
E12	16,92	16,93	3,11
E13	32,80	32,81	3,40
E14	33,70	33,70	3,36
E15	16,56	16,57	3,06
E16	26,67	26,67	0,30
E29	32,02	32,03	7,87
E30	19,56	19,56	-3,11
E31	26,24	26,24	-6,72
E32	41,33	41,33	6,71
E33	26,73	26,71	-6,92
E34	19,95	19,94	-3,06
E35	34,02	34,02	4,70
E45	18,71	18,71	6,05
E46	29,43	29,43	-10,23
E47	25,94	25,43	1,11
E48	39,05	39,04	-6,58
E49	24,87	24,87	2,60
E50	22,50	22,50	-8,60
E58	38,54	38,54	0,02
E59	28,57		
E60		28,57	-1,11 5,09
E61	35,00 28,04	35,01	-2,52
E62	25,23	28,05 25,24	9,76
E75	26,14	26,14	-6,02
E76	19,44	19,44	3,19
E77	22,09	22,10	5,32
E78	34,83	34,84	-5,09
E79		22,10	5,32
E80	22,09		4,81
E81	29,36 40,21	29,36	-
E90	22,46	40,22 22,46	-6,18 -3,18
E91 E94	39,22	39,22	-1,55 -5,45
E95	26,92 40,11	26,93 40,10	-5,45
E96	23,93	23,93	-1,21 -4,81
E96			
E106	28,32	28,32	-0,46 -5.67
E106	22,92	22,92	-5,67 -8.07
	36,23	36,24	-8,07
E108	42,87	42,86	-8,47
E109	26,24	26,24	-3,17

ANDRÉ RODRIGUES Engenheiro Estrutural

E114	37,50	37,50	-0,03
E115	28,49	28,49	-0,00

12.4.2. Bloco B

Elemento	Fz (tf)	Mx (tf*m)	My (tf*m)
E5	27,46	27,46	2,45
E6	40,88	40,88	7,60
E7	24,00	24,00	4,21
E8	19,34	19,33	2,63
E9	24,63	24,63	12,26
E10	24,23	24,23	13,00
E17	27,13	27,12	0,88
E18	22,98	22,97	4,02
E19	23,96	23,96	-6,33
E20	22,14	22,14	-2,98
E21	22,53	22,53	4,02
E22	27,72	27,70	0,94
E23	14,33	14,35	0,62
E24	18,96	18,95	7,39
E25	44,38	44,37	-4,49
E26	25,07	25,05	6,02
E27	26,57	26,59	7,37
E28	48,20	48,21	-1,23
E36	25,78	25,78	3,11
E37	18,43	18,43	-4,02
E38	28,89	28,89	-4,02
E39	39,08	39,05	4,47
E40	33,33	33,33	0,01
E41	25,68	25,69	-6,65
E42	28,28	28,29	-7,97
E43	16,88	16,88	1,37
E44	41,45	41,45	-8,19
E51	18,83	18,83	-6,44
E52	23,40	23,40	2,34
E53	55,72	55,73	-8,22
E54	46,43	46,44	-1,37
E55	34,51	34,51	-3,17
E56	42,37	42,36	2,34
E57	34,74	34,73	-8,04
E63	18,83	18,83	6,44
E64	23,40	23,40	-2,34
E65	55,72	55,71	8,22
E66	46,43	46,43	1,37
E67	34,50	34,49	3,17
E68	42,37	42,38	-2,34
E69	34,74	34,73	8,04
E70	16,88	16,88	-1,37
		,	,

E71	41,45	41,45	8,19
E72	33,33	33,33	-0,01
E73	25,68	25,69	6,65
E74	28,28	28,29	7,97
E82	25,78	25,78	-3,11
E83	18,43	18,43	4,02
E84	28,89	28,89	4,02
E85	39,08	39,05	-4,47
E86	26,58	26,59	-7,37
E87	48,21	48,21	1,23
E88	44,37	44,38	4,49
E89	25,07	25,06	-6,02
E92	14,33	14,34	-0,62
E93	18,96	18,95	-7,39
E98	27,13	27,12	-0,88
E99	22,98	22,97	-4,02
E100	23,97	23,97	6,33
E101	22,14	22,14	2,98
E102	22,53	22,53	-4,02
E103	27,72	27,72	-0,94
E104	24,62	24,63	-12,26
E105	24,23	24,23	-13,00
E110	27,46	27,46	-2,45
E111	40,88	40,88	-7,60
E112	24,00	24,00	-4,21

13. ORIENTAÇÕES PARA A CONSTRUÇÃO

E113

Durante obra devem ser mantidas especificações as estabelecidas em projeto. A substituição de especificações constantes no projeto só poderá ser realizada com a anuência do projetista.

19,33

19,34

-2,63

Estas especificações estão baseadas nas características de desempenho declaradas pelo fornecedor, porém cabe exclusivamente a ele comprovar a veracidade de tais características. Comprovação esta que deve ser solicitada pelo contratante.

O profissional responsável pelo projeto não se responsabiliza pelas modificações de desempenho decorrentes de substituição especificação sem o seu conhecimento.

ANDRÉ RODRIGUES Engenheiro Estrutural

A construtora deverá aplicar procedimentos de execução e de controle de qualidade dos serviços de acordo com as respectivas normas técnicas de execução e controle.

Devem ser seguidas as instruções específicas de detalhamento de projeto e de especificação visando assegurar o desempenho final e, em caso de necessidade de alteração, esta deve ter a anuência do projetista antes da execução.

13.1. Formas (moldes para a estrutura de concreto)

O projeto e o dimensionamento de formas (moldes para a estrutura de concreto) não fazem parte do escopo de nossos serviços.

13.2. Escoramentos

O projeto e o dimensionamento do escoramento não fazem parte do escopo de nossos serviços.

Observações:

- 1. Deve ser previsto o espaçamento máximo entre escoras de 2,0 m.
- 2. Deve ser garantida a verticalidade e o prumo das escoras.
- 3. No caso do ciclo de concretagem não ser o especificado no esquema e/ou existirem outras condições poderá ser estabelecido outro plano de cimbramento a ser definido pela Engenharia da Obra e o Projetista de Estruturas.
- 4. A retirada do escoramento deverá ser cuidadosamente estudada, tendo em vista o módulo de elasticidade do concreto (Eci) no momento da desforma. Há uma maior probabilidade de grande deformação quando o concreto é exigido com pouca idade.
 - 5. A retirada do escoramento deverá ser feita:
 - Nos vãos; do meio para os apoios
 - Nos balanços; do extremo para o apoio

13.3. Tolerâncias

Para a produção da estrutura deverão ser observadas as tolerâncias de execução conforme NBR 14931:2004 - Execução de estruturas de concreto - Procedimento.

13.4. Tecnologia de Concreto

O desenvolvimento adequado do traço do concreto, com a pesquisa dos materiais regionais disponíveis para a sua produção, agregados miúdo e graúdo, cimento e aditivos, poderá levar à redução no custo do concreto, além da melhoria nas suas características mecânicas, de trabalhabilidade e de baixa retração.

Deverá ser confirmado o agregado graúdo especificado no projeto. O desenvolvimento do traço do concreto e a avaliação de seu desempenho estão fora do escopo deste projeto.

13.5. Cura

O período de cura do concreto refere-se à duração das reações iniciais de hidratação do cimento, o que resulta em perda de água livre por meio de evaporação e difusão interna. Geralmente, a perda de água por evaporação é muito maior do que por difusão interna.

Logo, uma das soluções é manter a superfície exposta ao ar em condição saturada, reduzindo assim a quantidade de água evaporada. Outros processos também podem ser usados de forma a reduzir essa perda de água.

Sabe-se que um concreto exposto ao ar durante as primeiras idades pode sofrer fissuras plásticas e consequente perda significativa de resistência. Alguns ensaios indicam uma queda na resistência final do

ANDRÉ RODRIGUES

concreto de até 40% em comparação com concretos que mantiveram a superfície saturada por um período de sete dias.

A duração do período de cura depende de diversos fatores, como a composição e temperatura do concreto, área exposta da peça, temperatura e umidade relativa do ar, insolação e velocidade do vento.

13.6. Controle do Concreto

Tecnologista do Concreto poderá orientar procedimentos de controle de qualidade do concreto, critérios de aceitação de lotes e ensaios a serem realizados, especialmente no caso de não conformidade e eventual necessidade de extração de corpos de prova para rompimento.

O controle do concreto deve seguir as premissas constantes na norma NBR 12655:2015 - Concreto de cimento Portland - Preparo, controle, recebimento e aceitação – Procedimento.

Conforme esta norma, item 4.4, os responsáveis pelo recebimento e pela aceitação do concreto são o proprietário da obra e o responsável técnico pela obra, devendo manter a documentação comprobatória (relatórios de ensaios, laudos e outros) por 5 anos.

O projetista estrutural só deve ser acionado quando existir uma situação de concreto não conforme.

Para os casos de concreto não conforme deve ser seguida a norma NBR 7680:2015 – Extração, preparo, ensaio e análise de testemunhos de estruturas de concreto - Parte 1: Resistência a Compressão Axial e a Recomendação da ABECE.

13.7. Proteção das Armaduras

Devem ser adotados pela construtora, pós-execução da estrutura, cuidados para que não se tenha perda de durabilidade por corrosão da armadura:

- Evitar escorrimento de água pluvial pelo concreto, através da execução de pingadeiras ou outras proteções adequadas;
- Impermeabilizar as faces de concreto expostas ao tempo ou em contato permanente com água;
- Colmatar fissuras visíveis, acima dos limites normativos da ABNT NBR 6118:2014 para evitar processos corrosivos.

14. ORIENTAÇÕES COMPLEMENTARES E ITENS FORA DO ESCOPO DO PROJETO ESTRUTURAL

14.1. Desempenho acústico:

Não faz parte do escopo do presente projeto a especificação de materiais ou componentes que, nos sistemas estruturais, garantam o atendimento aos requisitos de desempenho acústico previstos na ABNT NBR 15.575, item 12.

O preenchimento dos blocos de alvenarias de vedação deve ser autorizado pelo responsável pelo projeto estrutural, para efeitos de consideração de possíveis incrementos de carga.

Analogamente, as espessuras das lajes foram previstas de forma a atenderem aos requisitos de desempenho estrutural, e não faz parte do escopo do presente projeto a definição de revestimentos ou acabamentos que permitam o atendimento aos requisitos de desempenho acústico previstos na ABNT NBR 15575, item 12.

Soluções para atendimento do desempenho acústico que impliquem em alteração nas especificações de lajes e vedações

deverão ser comunicadas para verificação de possíveis aumentos significativos de carga que impliquem em alterações no projeto.

14.2. Estanqueidade:

Não faz parte do escopo do presente projeto a indicação de soluções para atendimento aos requisitos de estanqueidade relativas a fontes de umidade internas e externas à edificação, nos termos indicados na ABNT NBR 15.575, item 10.

O incorporador/construtor deverá prever soluções de projeto para garantia da estanqueidade, em especial no que diz respeito a ligação entre os diversos elementos da construção, tais como paredes não estruturais e estruturais, corpo principal e lajes etc.

Também não faz parte do escopo do presente projeto o detalhamento das especificações para garantia da estanqueidade de sistemas com função estrutural. Quando necessário, a incorporadora/construtora deverá prever o desenvolvimento de procedimentos de execução que garantam a estanqueidade dos sistemas.

Em atendimento aos requisitos na ABNT NBR 15575, recomenda-se a realização de ensaios de estanqueidade dos sistemas de vedação externa e esquadrias, considerando a classificação do empreendimento em relação a condições de exposição, nos termos das tabelas 11 e 12 do Anexo C da Parte 4 da ABNT NBR 15.575:2013.

14.3. Desempenho térmico:

Não faz parte do escopo do presente projeto a especificação de elementos complementares aos materiais empregados nos elementos estruturais, de forma que os sistemas construtivos, em seu conjunto, atendam aos requisitos de desempenho térmico estabelecidos na ABNT NBR 15575:2013, item 11.

Nesse sentido, deverão ser previstos blocos estruturais ou não, revestimentos e cores de fachada que permitam o atendimento aos requisitos do item 11 da ABNT NBR 15575.

14.4. Fixação de ganchos e balancins:

O projeto de localização de ganchos e/ou elementos de fixação de balancins e/ou andaimes e/ou linhas de vida nas fachadas, bem como suas respectivas cargas admissíveis, não faz parte do escopo do presente projeto, e projeto específico deve ser providenciado para verificação dos elementos de contorno superior da edificação.

14.5. Projeto do sistema de cobertura:

O projeto do sistema de cobertura e o atendimento aos requisitos previstos na ABNT NBR 15575 quanto ao sistema de cobertura, em especial os contidos na parte 6 da norma, não faz parte do escopo do presente projeto, devendo ser elaborado projeto específico.

14.6. Projeto de guarda-corpos:

Os guarda-corpos instalados em terraços, coberturas e outros locais acessíveis às pessoas devem ser dimensionados para atendimento aos requisitos de desempenho previstos na ABNT NBR 15575 e ABNT NBR 14718, sendo que esse dimensionamento não faz parte do escopo do presente projeto.

14.7. Projeto de beiral em alumínio:

O projeto do beiral acima da piscina e o atendimento aos requisitos previstos na Norma vigente responsável, não faz parte do escopo do presente projeto, devendo ser elaborado projeto específico.

14.8. Outros itens fora do escopo:

a) Nos termos da seção 7.4 da Parte 2 da ABNT NBR 15575:2013, ficam dispensadas de verificação de impacto de corpo mole e corpo duro as estruturas projetadas de acordo com as normas acima citadas, ressalvando-se a necessidade de ensaio caso os sistemas construtivos sejam associados a outros sistemas e/ ou componentes.

O presente projeto não contempla, por estar fora do escopo do mesmo, as soluções de projeto para componentes e sistemas sem função estrutural, previstos na ABNT NBR 15575:2013, Parte 3, no que diz respeito a impacto de corpo mole e corpo duro em vedações internas sem função estrutural, em lajes e em vedações externas de fachada sem função estrutural.

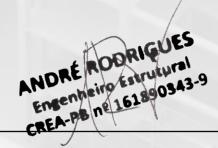
- **b)** Não faz parte do escopo do presente projeto a definição de especificações para o atendimento aos requisitos abaixo relacionados, que deverão ser previstos em outro projeto ou especificação:
 - Resistência a impactos de corpo mole (7.4.1 Parte 2)
 - Resistência a impactos de corpo duro (7.4.2 Parte 2)
 - Limitação de deslocamentos verticais (7.3 Parte 3)
 - Resistência a impactos de corpo duro pisos (7.4.1 Parte 3)
 - Resistência a cargas concentradas verticais- pisos (7.5 Parte 3)
 - Resistência a impactos de corpo mole nos SVVIE (7.4 Parte 4)
 - Resistência a impactos de corpo duro nos SVVIE (7.6 Parte 4)
 - Resistência a impactos de corpo mole nos SC (7.3.1 Parte 5)
 - Resistência a impactos de corpo duro nos SC (7.3.2 Parte 5)
- **c)** Revestimentos e/ou elementos e componentes aderidos às estruturas e vedações não estruturais deverão obedecer aos requisitos de

desempenho previstos na ABNT NBR 15575 – Parte 1, em especial no que diz respeito a:

- i) dificultar a inflamação generalizada, conforme indicado na ABNT NBR 15575, item 8.4;
- ii) dificultar a propagação de incêndio, conforme indicado na ABNT NBR 15575, item 8.5.

A especificação desses revestimentos e/ou elementos e/ou componentes aderidos não faz parte do escopo do presente projeto, e deverá ser prevista pela empresa incorporadora / construtora.

d) O revestimento interno de parede de fachada multicamada não é parte da estrutura da parede, nem considerado no contraventamento, quando for o caso.


15. ENCERAMENTO

Este documento foi elaborado pelo responsável técnico pela estrutura em questão André Rodrigues de Vasconcelos, CREA-PB nº 161890343-8.

E como apresentado acima, atesto que todos os critérios normativos foram atendidos para a elaboração desse projeto.

Para fins de facilidade de compartilhamento, deixo abaixo o QR code do site do projeto, para ter um acesso mais rápido a esse documento, as pranchas de obra, ART e muito mais.

ENGENHEIRO ESTRUTURAL

João Pessoa, 25 de março de 2022

